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. DISCRETE CONTROL OF LINEAR DISTRIBUTED SYSTEMS WITH APPLICATION
TO THE DEFORMABLE PRIMARY MIRROR OF A LARGE

ORBITING TELESCOPE
ABSTRACT

One of the more significant technological problems associated with
the orbital operation of large astronomical telescopes is the fabrication
and maintenénce of the primary mirfor surface to the tolerance requiréd
for diffraction-limited performance. An interesting approach to the
solution of this prdblem involves continubusly measuring and autoﬁa-
tically correcting the optical surface of a thin deformable mifror by
means of discrete actuators located on its rear surface. The real-
ization of diffraction-limited performance from a télescope in spacé
by this method rests on the ability of the designer to achieve extremely
accurate control of & highly complex, intéracting, ﬁultivariablelsystem.
This paper presents the results of a detailed study of thé’discreté
control of linear distributed systems with spécific application to
the design of a practical controller for a plant representative of a
telescope primary mirror for an orbiting astronomical cbservatory.

The problem of contfolling the distributed ﬁlant is treated by
employing modal techniques to repfesent variations in theloptical
figure. Distortion of the mirror surface, which'ariées prima;ily from
thermal gradients, is countered by actuators working against‘a backing,
structure to apply a corrective force distributioh to the controlled

surface. Each displacement actuator is in series with a spring attached

ii



to the mirror by means of a pad intentionally introduced to restrict
the excitation of high-order modes. Contrél is then exerted over

a finite number (equal to the number of actuators) of the most
significant modes.

Through the application of the modal expansion technique the mirror
equation of motion is transformed to a set of uncoupled, linear, time-
.invariant, ordinary differehtial equations. The desired dynamic
response and static.accuracy may then be achieved by thé application of
classical single-variable design techniques. The formulation of a
quadratic performance index which incorporates a measureof‘image quality
permits determination of the trade-off between the pumber éf actuators
and optical purity. A criterion for defining actuafor'placement and
pad size is presented which minimizes the teﬁdency of the éontroller to

excite the unmonitored modes.

iii



DOCTOR OF PHILOSOPHY THESIS
OF

JEREMIAH F. CREEDON

Approved:

Thesis Committee:

Chairman

Dean of the Graduate School

UNIVERSITY OF RHODE ISLAND

1970

iv



ACKNOWLEDGMENT'S -

The author wishes to acknowledge thevadministrative offigers of
the NASA Langley Research Center, the Flight Instrumentation Division,
and the Navigation and Guidance Research Branch for their cooperation
in permitting the author to pursue the research which led to this thesis.
The author is particularly indebted to his majof advisér,
Prof. A. Gg Lindgren for hls encouragement, guidance, and technical
suggestions.
The patience and encouragement of the authoi's wife, Gail, and

children have been factors of primary importance in enabling him to

complete this work.



MANUSCRIPT
T. INTRODUCTION « « « o o o o o v o o o o v oo e o e
II. MODAL EXPANSION TECHNIQUE « « o o o ¢ o o o o o o o o o o
III. ACTUATOR PAD SIZE AND LOCATION AS DESIGN FACTORS . « « . .
Actuator Pad Size
Actuator Location
IV. OSTATIC PERFORMANCE « « « ¢ « « & .‘. C et s e e e e e e
V. MODE ESTIMATION ERROR + « « ¢ « o o + o s o o s o s o s
VI. SUMMARY OF DESIGN CONSIDERATIONS « ¢ o ¢ o o o o s o o o &
VII. MODAL CONTROL OF A FREE CIRCULAR PLATE « « « « « « o o o &
Modal Representation
Actuator Size and FPlacement
VIII. CONCLUDING REMARKS + « « & o o s « o o o = s o s o s o o o« &
REFERENCES + &+ ¢ o ¢ o o o s o o« o ¢ s o s o o s o o « o o s o
APPENDICES
A. Determination of the Eigenfunctions and Eigenvalues of a

C'

De

TABLE OF CONTENTS

Simply Supported Flat Rectangular Plate . . . + « o« « « .
Determination of A Set of Actuator ILocations For Which

UN For a Simply Supported Flat Rectangular Plate is
Orthogonal .+ « ¢ ¢ s o ¢« o o o o o s 2 s s 8 e s s e o s .

Evaluation of the RMS Figuring Error For a Simply Supported
Flat Rectangular Plate . ¢« ¢ ¢ ¢ ¢ o o o 5 o o 5 o s o o «

Mirror Displacement Feedback . . ¢« ¢ o ¢ o o o ¢ o o o &

BIBLIOGRAPHY ® e e & o o e o o . . o o ¢ ® . * o « o ¢ e e & o

vi

11

26

3k

39
46

53

65
67

69

6

85
91

100



Figure 1.

Figure 2.

Figure 3.

Figure L.-

Figure 5.

Figure 6.-

Figure 7.

Figure 8.

Figure 9.

Figure 10.-

Figure 1l.-

Figure 12.-

LIST OF FIGURES

Transmission of incident radiation through the
earth's atmosphere . . . « . + « « . 4 0 . e e . .
Two views of the lunar surface indicating the
increased resolutioﬁ available from an orbiting

telescope « . ¢ 4 i 4 e e e 4 e ke e e e e e e e

Schematic representation of a system for controlling

the optical surface of a teléScope primary mirror. .

Compariéon of a thin deformable mirror wiﬁh a

‘mirror of normal thickness-to-diameter ratio .

Comparison of the diffraction pattern of the
uncontfolled'mirror with that of the mirror during
control . . . . e e 4 e e e e e e S
Operator representation of the plant .

Flét rectangular plate e e e e
Modal representation of the plant . . . . .-. ..
Decoupled compensation of Aj(s) v . « « & o . . . .
Controller representation in the original reference
frame . . R A R .'. . o e
Partitioned representation of the controller and
plant . o ¢ . . . 0 0 e e e e e e e e e e e e e e
Idealized N X N multivariabie system resulting from
a finite modal expansion of the distributed

SYStemM v o ¢« 4 4 v v e e e e e e e e e e e e e e

viii

12

12

.15
L7

19

20

25



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

13. -
1k, -

15. -
16.-

17~

18. -

19.-

20, -

22.- ‘\ﬁl/blate area for a flat circular free plate

Pad shape, size, and location .

Plot of sin(t)/& illustrating the filtering action

of pad

Schematic of the mirror figure error sensor .

System configuration including measurement

errors . e e

The locations in the m,n plane of the controlled,

unexcited, and unmonitored modes of a flat

rectangular plate .

VJl/plate area for a simply supported flat square

plate . . .

Free circular plate .

Modes of free vibration of a free circular plate
The locations in the m,n plane of the controlled,

unexcited, and unmonitored modes of a free

circular plate

ix -

e .

27

30

L2

b9

51
54
58

62
63



I. INTRODUCTION

The class of distributed plants considered in this paper is
restricted to those described by linear, time-invariant, separable
operators where control is derived from a finite number of discrete
inputs. ' Application of the modal expansion approach(l) converts the
distributed-parameter problem to one of a multivariable nature which

(2)

readily yields to decoupling techniques. Classical single-variable
control methods are applied to decoupled system dynamics defined in
terms of the eigenvalues of the linear operator whose eigenfunctions
are assumed to form a complete orthonormal set. While the fesults

are applicable to the general problem of controlling linear distributed
systems, the motivation for the study is a direct result of its
relevance to one of the central problems of large orbiting telescope
technology.

Elimination of the effecté of the earth's atmosphere give orbiting
telescopes significant advantages relative to earth-based telescopes;
Figure 1 displays(percent transmission of the incident radiation
through the earth's atmosphere as a fﬁncﬁion of wavelength.(B) In
the portion of the spectrum shown, the earth's atmosphere is opaque
to radiation shorter than 3 X lO'5 cm and longer than 3 X lO'3 cm, with
numerous gaps between these extremes. Since the entire spectrum of
radiated energy becomes available for study in an atmosphere-free
environment the additional spectral coverage would permit studies

()

involving galactic nebulae and cool stars (stellar evolution).
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Secondly, refraction anomalies associated with the turbulence of the
earth's atmosphere limit +the resolving power of earth-based telescopes;
consequently, the 200-inch (508 cm) Hale telescope at Mt. Palomar has
no better resolution than a high quality telescope ef approximately

15. inches (38 cm) diameter.(5) Placing a 120-inch (3 meter) telescope
in orbit would yield an increase in resolution of at least a factor ef
7 relative to land-based telescopes and 3 relative to present space
telescopes. This significant improvement is useful in studying double

stars and in planetafy photography.(u)

Figure 2 shows two views of

the same portidn of the lunar surface. The photograph on the right

was taken by the 120-inch (3 meter) reflector at the Lick Observatory
and represents about the best resolution available from an eerthébased
telescope. On the left is a Lunar Orbiter photograph of the saﬁe area
which has been selected to show the resolution available from the same
size teleecope outside of the atmosphere. Further, elimination of the
background glow associated with the atmospﬁere would permit longer
exposure'times'in celestial photography, effectively enabling'astronomers
to see deeper into space. Reélization of these advantages is continéent
yupon solving-severél technologicel prdblems.

.One of the more significant of these problems and the one which -
motivated the present investigation is the fabrication and maintenanee'
of the primery mirror surface to the tolerance required for diffrection~
limited performance. For the purpose of this paﬁer, diffraction—limited
performence is defined as being obtained when the rms figure error

over the mirror surface is less than a fiftieth of a wavelength, which



Figure 2.- Two views of the lunar surface indicating the increased
resolution available from an orbiting telescope.



-6 cm). It is extremely difficult

at 6328 A is 1/2-p inch (1.27 x 10
to achieve this accuracy with the monolithic mirror normally used in
telescope applications as uncorrected thermal gradients, fabrication in
a one "g" and operation in a zero "g" environment, and material reaction
to stresses introduced during figuring all tend to cause distortion of
the mirror surface.

An interesting approach which has been investigated as a means of
solving the problem involves measuring the deviation of the mirror
figure from the desired shape, generating the necessary control signalé;
and applying ﬁhese signals to physically align the mirror to the desired
shape. This concept, which is shown -schematically in Fig. 3, has been
investigated with both a Seémented and a thin deformable mirror. The
‘segmented mirror consists of a number of individual pieces or segments.
This approach was selected because many of the effects causing surface
deformations are reduced on mirrors of small size. In a Cassegrain
telescope the incoming light is reflected by the primary and secondary
mirror to focus behind the primary. In this case, the primary is also
illuminated by monochromatic light which is returned to the mirror
. figure error sensor. The error signal is then processed and applied
to the actuators whiéh corfect each'éegment in-tilt and focus.

This concept has been successfully applied to a small segmented

(6, 7).

mirror. However, the construction of large segmented primary
mirrors from individually fabricated off-axis portions of a parabéloid

(matched in focal length) would require new technigues of fabricating
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diffractionflimited aspherics. In addition, the segmented mirror
consists of a number of monolithic mirrors each subject to the same
limitations as a monoclithic mirror.. While thesé limitations are
reduced in the relativély small segments, they are still of sufficient
magnitude to require that the segments be fabricated from a substance
which exhibits a very high degree of material,stability. This is
because the segments are corrected in ti;t and focus only and any
warping of a segment cannot be completely corrected.

An élternate approach involves a thin, continuous-surface,
deformable mirror that can be stfessed into the desired shape by means
of a large number of actuators arrayed across its rear surface. The
-greater control flexibility inherent in this approach shows promise
of relaxing the material stability and fabrication tolerance require-
ments. .A laboratory model of a thin mirror is shown in Fig. 4 alongside
a conventional monolithic'mirrof. The thin mirror is 30 inches (76.2 cm)
in diameter and 0.5 inches (1.27 cm) thick. Actuators were located
every 3-3/4 inches (9.46 cm) over the rear surface of the mirror and
were used to apply a corrective force distribution.(B) Preliminary
operation of the systeﬁ‘indicates thét the actuators were able to
reduce the initial figuring error to acceptable_levels. This is
illustrated in Fig. 5 which displays photographs of the diffractibn
pattern of the mirrér before and during control.

While this application appears to demonstrate the ability of the
thin mirror approach to enhance the telescope performance, s number of

‘areas exist in which an improved design téchnique would be ofvsignificant
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| value. In present design efforts the dynamics of the plant have been
largely ignored. This is a significant factor in the control of larger
mirrors which have very lightly damped low frequency resonances.
Selection and placement of the actuators is presently-done on an
arbitrary basis aé a.resulf of fhe present limited ability to'rélate
the effects of these design decisions to system performance. In
addition, the ability to more completely incorporate information‘on
‘the disturbancé characteristics, to the extent that it becomes
available, is desirable. |

The purpose of this‘paper is to present a.generai theory for the
discrete control of a distributed—parameter system and extend the~modal
erpansion technique to completely specify system performance.
In the past little research effort has been devoted té the problem of
obtaining discrete control of distributed-parameter syétéms and the
results which have been obtained by Gould and Murry;Lasso(l) areulimitéd
to‘plants which have finite modal content. In this thesis the entiré
modal structure of the plant is considered for the problem of'obtainiﬁg.
a specified level of performance while minimizing the number of control
inputs to the plant. The method is demonstrated with exaﬁples and
results are'presented for a plant representative of a thin‘deformable

mirror.



IT. MODAL EXPANSION TECHNIQUE

A schematic representation of the plant under consideration is
shown in Fig. 6 where L is a linear, time-invariant, separable operator.
A typical example of a distributed system is the thin rectangular plate
of Fig. T, where the deflection normsl to the midplane of the platé
w(x,y,t) results from the application of a transverse load density

p(x,y,t). The equation of motion of the plate is giﬁen by(9)

2
V2 S V2W(XJY)t) +p ;t_g' W(XJy)t) = p(x,y,t) [l]

where V° is the Iaplacian in Cartesian coordinates, p the mass per unit
area, and S= Yn’/12(1 - v2) is the flexural stiffness modulus of the

plate. The deflection, w(x,y,t), is assumed separable, i.e.,
wi,y,t) = ey (tu(oy). (=]

Substituting [?] into the homogeneous form of [i] yields, for a

homogeneous plate of uniform thickness,

2
a%e;(t) 2
T s et =0 &5

and

gv“ui<x,y) - afu, (x,5) =0 Ed

11
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Plant

p(x,y, ) ——— — w(x;y,f)

Figure 6.- Operator representation of the plant.

> Y
wix,y,t)
. Y = Young's modulus

\» = Poisson's ratio

T P(XIYIf)

~

Figure T.- Flat rectangular plate.



where a@

;1 1s a constant whose value is specified by the boundary

conditions. PFor the simply supported plate, which has boundary

conditions(lo)
ui(OJY) = ui(a:Y) = ui(X:O) = uj_(x:b) =0,
62 u, + v 82 u =0
2 & Bye i -
x = 0,a
and
2 2
o) 3
— e — . =
’ x2 dy° e >
y = O’b

(11) a denumerably infinite sequence

RG]

where m, n = 1, 2, ... are the mode indices corresponding to the

there exists

eigenfunctions

umn(x,Y) = — (51n m = x)(51n n E y)

which form a complete orthonormal set (Appendlx A). Conseqpently,

the general solution to Eq. [l] is

13

(2a)
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Y
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2] co

wGeyt) =) ey (ny) = ) e (Eh (o) (e3

i=l m,n=L

and since the u; form a complete set the loading may be expanded in a

uniformly convergent series of the form

p(x,¥,t) =§{:51(t)ui(x,Y) = }; apn (8 up (%,7) . [?%J
‘ i=1 m,n=1 :

where

ay(0) = [ fpp(x,y,mi(x,y)ax N

and I" is the spatial region in which the plant is defined.
Substituting [6a), (6], and (3b) into [1] and teking the Laplace

transform with respect to time yields

izl (5% + ey (ohug () = 1), (ohu, () a

i=1

where s is the Laplacian operator and, for convenienée, the same symbol
is used to denote a variable and its'Laplace transform. Since the

ui(x,y) are independent the coefficients ﬁay be equated yielding

ey(s) = M(s)ag(s) - | ",[8%]
Ki(s) = ——}ZE—- _ ';f  ‘r-[bé)

52 + of
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Based on Egs. [6a-c] and. [8a-b]., the plant shown in Fig. 6 may be

redrawn as shown in Fig. 8 which is a modal expansion of the distributed

plant.
a,(s) c,(s)
iti 1 1
M(())fdag(ge;zr)np osition ————> )‘1(5) > Recomposition
P A

p(x,y,s) az(s) Cz(S) W(X’Y;s)
—_— ai(s) = . ] 7‘2(5) > w(x,y,s) ————————

Sp(x,y,S)ui(x,y)dxdy a(s) €, (8) % ¢, (s)u, (x,)

o A (s)| R Ratas |
T n T i=1
Analyzer ' Synthesizer

Pigure 8.~ Modal representation of the plant.

More generally, Fig. 6 represents the functional equation

w(z,t) = L?(Zzt) .‘ . [9]

where z represents a general spatial varisble (in one or more
d]’_rnensions) and the operator L operates on functions of time and

distance. Laplace transforming Eq. E 9] with respect 0 time yields
w(z,s) = Lp(z,s) [lca
where the eigenvalues of L satisfy
Luy(z) = A (s)uy(z). [:l]:]

Since the ui(z) are assumed to form a complete set, the separable

functions w(z,s) and p(z,s) can be expanded as



o0

w(z,) =) ey(s)iy(2)

i=1
and

o0

p(z,s) =§E: ai(S)ui(z).

i=1

substituting [11], (12a), ana [12b] into [10] yields

o« (2o} o©

;Z: c;(s)u;(z) = L :{: a; (s)u;(z) =j{: a; ()N (8)u;(2)

i=1 i=1 i=1
. »

and consequently,

e;(3) = ny(s)ay(s)

16

]

(=3

[24]

[31)

with ai(s) defined by the transform of Eq. [bq]. Figure 8 is then

the general modal representation of the class of distributed plants

under investigation. In a function space where the eigenfunctions of

L are used as the coordinates the system is represented by the infinite

diagonal matrix

A(s) = [7\1(5)]. _.

- [ay]

In this reference frame, control of the plant output can be readily

achieved by individually compensating each element of the diagonal

matrix, as shown in Fig. 9.
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r,(s) e.(s) a.(s) c.(s)
- ~ slde)]—2 x(8) |——

Figure 9.- Decoupled compensation of A;(s).

The significance of the modal control indicated in Fig. 9 is that
it is reletively easy to express the system least squares performance
in terms of the orthonormal modes of a vibrating structure. This is a
phenomenon of particular interest7in the mirror application since the
integral square error is the desired performance index of an optical

(12) With the error in the optical surface W represented by

surface.
the modal coefficients ey the image index (expected integral square
error) is given by

00

Jg =E[:fp wg(z,tjd.z] =E f Z ei(t)ui(z). 2dz
B iz
=B i e2(t) =i ‘cgi o | [15)
i=1 4 i=1

where E denotes the expectation and Gg.
i

in the i®P mode which is assumed to have a zero mean. The last steps

is the variance of the error

result since ui(z) is a member of an orthonormal set. Thus, the measure

of image quality, JI’ is a simple function of the variance of the mode
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error which can be reduced by appropriate control one mode at a‘time
as indicated in Fig. 9. Relating the original signals iﬁ the system
to those of the decoupléd reference frame; the contrél system structure
becomes that shown in Fig. 10 where e and a are column matrices whose
elements are the modal coefficients e; and aj respectively. In
practice the situation illustrated in Fig. 10 can only be approximated.
The function of the analyzer is to determine the modal content of the
optical surface error. The decoupled controiler dynamics, represented
by the matrix D(s) = diag[:di(si], is determined on the basis of
standard design techniques (éee Fig. 9 ) to achieve a satisfactory
performance level. For a well-ground mirror the need for corrective
action diminishes as the mode number, i, increases and control can be
reasonably be restricted to the significant modes. The N controlled

N

modes are denoted by the output and error N vectors cN and e in Fig. 11.

The finite (N X N) controller matrix is represented by DY, The

function of the load synthesizer is to place an appropriate force
A distribution on the plate to correct for the modal errors in eN. Since
the remaining modes are unmonitored (no corrective action taken), the

ideal force distribution applied'by the loading mechanism is

N

P;gea1(?-t) =Z 2;(t) u;(z) - [a6]

i=1 -
with none of the uncontrolled modes excited. Physically this corrective

loading is applied by finite numbér of control manipulators which, in
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the mirror problem, are comprised of displacement actuators in series
with a spring acting against a backing structure. The spring is attached
to the mirror by means of a pad intentionally introduced to restrict

the excitation of uncontrolled modes (a point discussed in detail later
in the paper). The actual (non-ideal) force density applied by these

N actuators is given by

N N
Bet) =) pynt) =) ay@eyla (1)
3=l §=1

where P represents the force distribution resulting from the jth
actuator, and the last step results under the assumption that each
applied force distribution is separable in time and distance. Expanding

each of the B:(z) in terms of the eigenfunctions, u; (z Eq.- 17 becomes
J - i )

o | N L
p(z,t) =2 Z hijocj(t) ui('z) - ‘ ‘[:18]
| == , - |
where )
hij = . Bj(z)ﬁi’(z)dz - \ [:18b]

and comparison with E6b] reveals

N : '
aﬂt)=§:htpﬁtL o [194)

J=1
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In matrix form this relation between the mode force coefficients and

the actuator signals becomes
a = Ha [}9@]

where H is an o x N matrix and aN is an N vector. Equation [?9?}
indicates the control elements excite all modes. Since only N of the

more significant modes are controlled, Eg. [?95} is partitioned as

aR R

al|_ |8 (] N [eoj

where HN is an N X N matrix, HR an « x N matrix, aNJan N vector
corresponding to the controlled modes, and:aR accounts for the remaining
modal force coefficients. To provide the desired corrective vector

aN the actuator inputs are given by

e ) N
where it is assumed that the‘actuator locationé insére HN is non- |
singular - this point is discussed in detall in a subsequent section.
Partitioning the matrix re?resenting the plant dynamics into components
corresponding to the controlled and uncontrolled modes, the overall
system becomes that shown in Fig. 11 where disturbances qN and qB acting
on the plant are included as equivalent displacements. When thée mode

number, i, is ordered with'increasing frequency of vibration, Wy = Wy,

the plant inherently performs modal filtering which attenuates the
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v

higher modes so that their contribution. to the error (mirror'distortion)
rapldly becomes negligible és the mode number increaéeé. Consequently,
it is often assumed that only the first'N'modes are present, i.e.,

cR and aR are identicaily zero, and considerable simplification results.

For example, let wN be an N vector defined by the output at N different

points. That is,
N -
w = col w(zj,t) | [éé]

where Zj represents a measurement point. In terms of the mode

displacement coefficients

= ghel | | . [234]
where
wlz)  wplz) - u(z) |
ul(zg) u2(z2) e uN(zg) . ' [?3@]

. .
- .
. .

(o) uplay) « o uy(zy)|

Under these conditions the mode analyzer becomes simply an operation

on the N measurements; specifically

N [UN:]—l wl\.I | : [24]

where the sensors are located at positions to insure UN is nonsingular.

The control structure of Fig.ll then reduces to the N X N multivariable
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system(z) shown in Fig.12. This idealized representation, valid when
the effects of the higher modes can be safely neglected, was deriyed

by Gould and Murray—Laséo and is treated in detail in reference 1.
Control of the low-order high-amplitude modes as indicated in Pig. 12,
or in the decoupled form of Fig. 9, presents the classic problem(lE)

of controlling a ;esonant plant with a limited control effort (restricted
actuator thfow). While for large primary mirrors with low resonant
frequencies this may be a substantial problem, in the present paper

it is assumed that the disturbances qN(t) are slowly varying and of
sufficiently small amplitude that any desired degree of control can

be realized. Negligible contribution from the uncontrolled modes can -
generally be assured by permiﬁting N to be arbitrarily large. However,
in the present problem extremely accurate control of the optical surface
of the thin deformable mirror for diffraction-limited performance is
required with a minimum number of actuators. Under these conditions
the effects of ef and af are not negligible, but, in fact, repfesent

- the most significant system errors and the most important factors in

evaluating design tradeoffs.
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ITTI. ACTUATOR PAD SIZE AND LOCATION AS DESIGN FACTORS

The uncontrolled modes enter the problem in two major ways. First,
the actuators excite not only the controlled modes but, in general,
all modes. To demonstrate, first separate the image quality index

into two parts, i.e.,
J_=J.+J ' [:25::1]

where

ey, &, | =

accounts for the error in the controlled modes and

0 ‘

R = Z Cr‘gi (2>
i=N+1 :

accounts for the remnant error of uncontrolled modes. As larger

actuator displacements are commanded in order td reduée JN to smaller

and smaller values‘JR4increases due to the effect of al. Secondly,

uniess direct measurements of the modes are made; é limitation onvthe

ability of the displacement sensors to obtain an uncorrupted estimate

R

of the N controlled modes results from the presence of e™.

Actuator Pad Size

The function of the actuators, as indicated in the previous

N

section, is to apply forces to reduce e while minimizing the

excitation of the uncontrolled modes, i.e., ideally

26
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H= [?ﬁ:], HN nonsingular. [26]
In the mirror problem the control manipulators are modeled by a
displacement actuator working against a backing plate and a relatively
soft spring which is attached to the mirror by means of a pad. The
ability to approach the situation on Eq. [?6] is governed by pad size
and location, which are factors under the influence of'the designer.
To illustrate the effect of pad size, consider thébrectangular plate
of Fig. 7. The pads are assumed to be rectangular in shape and

located as shown in Fig. 13.

._..._. -+ (A X)j

N

Figﬁre 13.~- Pad shape, size, and location.
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The amount of force applied by the jth actuator is determined by the
product of the spring constant K and displacement actuator position.

This force loads the plate as indicated by Eq. [}i] with

Kf'( ) ) ’
B3(x,¥) = kil (27]

fﬁ £5(x,y)ax dy

where fj(x,y) is the distribution of the force and aj(t) is the control

input. Considering a force distribution that is constant over the area

of the pad, Eq. [:18‘0:] yields

h. . = Jf k/‘ — sin E—— sin oy dx dy
1 () (av) 4 (Ay) b

pad
area
my( Ax nwx

| sin DHAR)g oAy

I myex nxny. 2a Zb
= — sin J sin J , . [?SJ

ab a b mx nx

_ 2a 2b J

where i indexes the mode m,n. For this special case with constant pad

size (L.e., (&x); = (&x); =4, and (&); = (&); = 4,), Eq. (28] may

be rewritten in matrix form as

=qu | o =98]
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where U is the N x « matrix,

uy(z9)  up(zy) « - - u; (21)

o R

ill(ZN) ug(zN) . e ui(ZN) .

-

the prime denotes the transpose of a matrix, z; denotes the point X3,

Yis
G = diag g;(A,,0) o (29¢]
and
r'- mrd, . n:rAb_}
sin sin
2a 2b
81 = 8m =K : ’ [303
mma nJTAb ' .
o) . Zb
L < _

Figure 14 contains a plot of (sin &) / E. Assuming the controlled modes

and

< < . . < a
are m ; Mmoo and n = Dyax and pad dimensions are A, = o
Oy < %—, the maximum value of the argument for one of the controlled
ax
modes is & = 11:/2 which occurs when adjacent pads touch. The attenuation
of the higher order modes by the pad is apparent from this diagram as

the elements of G decrease rapidly for i > N and, in turn, decrease

the output levels of HR approaching the idealized condition of Eq. [26].



30

sin@ 10
¢ 8
6 —— Minimum transmission level
| for a confrolled mode
1
4 - |
|
|
2 |
B T 2 37T
0 | 1 I D el .
7 N_ =T g
-2 - ‘

Figure 14.- Plot of sin (&)/¢ illustrating the filtering action of pad.

The prefilter action of the pad is complemented by the transmission
properties of the plate itself. For the rectangular plate of Fig. 6
the relation between the applied loading and displacement output for

the ith mode is

2 (s)/o |
Ci(S) = ) ) [5]-]

S+€S+(J.X_L

where a small amount of damping has been included. In response to a
step input the steady transmission is
i

e
I a o (32]
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where ag is given by Eq. EB%J. Assuming a 0.5 inch (1.27 ¢m) thick,
30-inch (76.2 cm) square plate with a Young's modulus of 107 pounds
per square inch (70.3 x 10 gm/cm®) and a Poisson's ratio of 0.2,

this factor is

lim ©i  7.73 x 1072
— =L 33
t > ai (m2 + n2)2 [ ]

A byproduct of the pad's desired effect on HB is a decrease in the
transmission properties of HN. As a consequence, an increased effort
is required to deflect the surface. This is readily demonstrated for

the simply supported rectangular plate where
?
=gy )

and with appropriate actuator placement Ul\T is orthonormal (see
Appendix B). Consider the expected value of the norm of the actuator

displacement vector given by

, N 4 é
NN NN VWL N -L N 21
e o =[]l P )7 =) (=) [9)
S ‘
N ' .

Thus, as the elements of G are decreased, the reguired control
displacement and force increases. Since the plate itself was shown
to perform substantial filtering; & compromise on the final pad shape

and size is normally employed.



32

Actuator Location

Another critical factor oﬁ the HN and HR matricés is the placement
of the actﬁators. The actuator locations must be selécted to prevent
ﬁhe occurrence of a singular A matrix. Since the actuator locations

most directly affeﬁt the UN matrix, knowledge of the mode shapes will
generally permit the selection of the location of the actuators. This
situation is detailed in the examples. Evaluation'of the determinant
may be used to verify the invertibility of HN. In addition, if a fow
of HR is zero, the mode corresponding to that‘fow cannot be excited.
This 1s appr§ximat¢ly achieved for most plants by locating pads at the
zeros (nodes) of the mode in question. For the rectangular plate, this
is exactly achieved since the influence of pad location of H is
delineated by U', see Eq. [?é]. When the modes are ranked in order of
importance, the desired goal is to control the first N and null the
next highest modes; however, this is not usually'pOSSible and tfade-
offs are required. For example, it may be possibie to contrdl a set
of modes that are not the N most significant but be able to preclude
excitation of the next highest modes or, alternatively, control the N
most significant modes but not have the aﬁility to preclude excitation
~of the most dominant uncontrolled modes. Since the controlled modes may"
be reduced tc any desired level at the cost of some indreasejin the
~amplitudes of the unmonitored modes, the contribution of these higher
modes to system error represents the most critical factor in system

design. Determination of the trade-offs in actuator size and placement



is obtained through evaluation of the system performance index, Jys

which is discussed below and illustrated later in two examples.
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IV. STATIC PERFORMANCE

~The design objective is to minimize the image index defined és.the
exﬁectation of the integral sqﬁare surface erfor;‘ As shown in Eq. Eiﬁ]
this is a function of the mean. square valués.of the modal error |
coefficients. Determination of JI as given Ey Egs. E25a—§] is depeadenﬁ;
on the nature, particularly the spectral content, of the disturbanpes.li
For the'application to thé control of a deformable primary mirror‘of
an orbiting telescope, it is énticipated‘thaﬁ the primary error sources.
willvbe initial figuring erroré and‘relétively slowly time-varying
‘thermal gradients. In this céntext it‘isAreasonablé to expect thafvtie
system will generally be performing at or near its stafié values.

' In'Fig. 11 the surface déformation due to the disturbances is
defined in terms of its,dispiacement ﬁodal expansion coefficients, q.
No loss in generality results fram considering the disturﬁénces,to be
displaééments since equivalent force distributions could be aséﬁﬁed.
With reference t§ Fig. 11, and with a&(z,s) zero, the errdr.in the

- control modes is given by . . : ,
N NNt ow o PR
e = - [? + A DNJ Q. o E36] .

For the static situation this reduces to L

-1

% TTTE U 0<i =S | :[_3'7]
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where K; is the loop gain (type O system) for the i%h mode. When the
loop transmission contains a pure integration (type 1 system), Ki — .
Thus the error in the controlled modes can theoretically be reduced to

any arbitrarily small value. The expected value for Jy then becomes

2

wey () B

i=1

where gq; is the rms value of the static (or slowly varying) disturbance.

The-error in the uncontrolled modes is,given by

R_o_ R - ARRN

e

SR ABERGEN]-;DN[E . ANDN]-}qN o 9]

which under static conditions becomes

N .

€: = - Qs + q;_.i{.‘l__ N+1<i D.l.o]

AR R i T+ K] 43 : - Ha
j=1 ' :

where V;; is an element of the matrix
-1 : ‘
v = ARaR (AR ] . J [on]

Assuming the modal coefficients of the disturbance are uncorreiated,'i.e.,

E(qiqj).'=

| .D»l]'
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the éxﬁected error in the uncontrolled modes becomes

o - . , ‘
' : o [ K
= : se | — = + Yo
'R Z 0%11 ¥ >~ Z Yas (l*'Ki) O%i JRo 'R, (2]
1=l g=N+1 _i=1 ,

whefe IR, is the value of the disturbance error in the higher modes
withoﬁt control. The sécond term JR, is clearly positive and represehts
the increase in JR that fesults from the actuator dispiacements
requj‘.red. o control\thé errors in the first N modes. Since JRc is
finite, the series converges and the order of summation may be reversed,
yielaing

2

N o '
K' . .
: 2 L 2

i=1

where
% = Z “’?i | | [i50)

is a constant dependent on the design factors of actuator pad size and
location as well as the natural modal filtering performed by the plant.
Combining Egs. [?Ba—c] R [38] , and [ﬁi] yields as the imaging index

2

N D ' ’
Jp = Jg_ + S LR IE TR 5 [mﬂ
I~ "R A\ ER) U 1+Ky) 4l

i=1

The first term is unaffected by the control action, the second decreases

as a result of the controi action and the third increases.
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Since IR, is constant, minimization of Eq. [;4] with respect to

K4 yields optimum performance when

. , o
K; == _ )
b1
and
N ‘ . ’ ' N 2 .« .. |
. : 05 A
JI = Z l 0'2.- + JR = z ————l 0’2. + JR . E%]
topt 1+K;/ U o 1+q2 4 o :
i=1 : i=l ~ i :

Awith the contrblled and uncontrolled, components given by '

JNopt =Z (l +1K;> Z(l + CPl) i | Dﬂj‘.

i=1l
and
K : N 2
\ Qs
J =) ———— J'=Z——-———-—l 02, + Jg - 48 |
Ropt (l + K, )2 94 Ry Li(1+¢2)2 4 Ro [. ]
i=1" i '
N
Recalling that w1thout control JN E: ql, it is seen that for large
i=1

loop gain the error in each term of JRopt due to control is approximaﬁeiy
1/K; while each term in»JNopt is reduced by an additional I/Ki;

" Thus, if significant improvement is to be gained in the optical surface
by the above method, N must bé selected sufficiently large and the

actuator size€ and placement such that @§ = 1/Ki << 1. In the mirror .



situation JRO is negligible and JR represents the major source of
. Cc )
concern.

Because K; is large, a type 1 system is normally employed and

N '

T = 2.2 '
I1 _Z q)idqi * _JRO‘ o E@]
i=l : :
The required value of N to achieve the desired rms figuring error can
be minimized by the selection of pad :size and location whose effect

is manifest through the parameters @%.



V. MODE ESTIMATTON ERROR

The preceding analysis assumed ideal measurement of the controlled
modal variables e;; however, in many applications it is neither
practical nor possible to obtain direct measurements. In thése cases
an estimate is oftén derived from a spatial sampling of the distributed
output. This is the case in the mirror problem where the most commonly
used measurement of the optical surface is performed by the interference
method illustrated in Fig. 15. This mirror figure error sensor is
a modified form of a Twyman-Green interferometer. In this interferometer
tﬁo plane wavefront beams are formed from a common coherent source.

One beam is reflected from a reference flat while the second is con-
vertéd to a spherical wavefront whose center of curvature is that. of
the mirror. This wavefront is returned by the mirror and forms an
interference pattern with the reference beém which is focuéed on the
N discrete individual sensors. Periodic motion of the reference flat’
produces a sine wave of identical frequency at each detector. This
converts the error determination from an amplitudg to a phase measure-
ment and permits the required seﬁsitivity to be achieved.

Under conditions where no modes except the first N exist, the
relation of the modal coefficients to the N measured values 1s given

by Eq. [é%] which for the mode error is

-1 _
egeas = [ : Wg' [5@].
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However, the presence of the high-order modes deteriorates this

measurement since the actual measured vector is defined by

W el 4 ReR E5l]

e

where IfR is the N x » matrix

Capa(22) « -+ vpeg(2) -

* = . . . ) NE3

L_ul\T+l(ZN) o o oouyeslzm) ..o

-

Consequently, the estimate of the modes in Eq. E50] ‘becomes
-1 oA i
S I R N )

N, efined in Eq. [53),

The manner in whié};l the measurement error e
evolves is shown in Fig. 16. The disturbance error in the first N
modes can be controlled to an arbitrarily small value (see Eq. EBBJ )
while errors in the remaining mgdes cannct be counteracted.‘ A majof
effect of the measurement error in Eq. E55] is to introduce an
additional error in the controlled modes. To illusti'ate , the ,vectdr

el is seen from Fig. 16 to be given by

&N = _ AN q1\1 ,[:54,{]
where

o = [ﬁNj'lDN (e + o], [540)
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and substituting [5&5] into [Ehé] and rearranging yields
e = - [1+ A" -qu - [z + ANDN_TlANDNeN. (>3]

For a type O system under static conditions, Eq. [55 becomes

Qi Kj . .
€1 =-l+lKi—l+lKi € LSW (562
or, for a type 1 system
el = - N - | [UN]_lUReR. A E56b]

Attention is now given to the error defined by Eq. [§6ﬁ]'since, as
previously established, most practical systems would possess an
infinite loop gain. Two distinct cases are now considered: one where

R

e” 1s dominated by the disturbances acting on the plant, i.e.;

e gt N )

and, secondly; where the error in the higher-order modes contributed
by the disturbance vector, qR, is negligible but the error introduced

by the control effort is significant, i.e.,

1 _
. -1 po-l | ,
(x + [ v®) v (58]

For ease in later calculations it is assumed that W[b“]- W® is negligible

éompared to I and that UN 1s nearly orthogonal permitting the contributim
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N

to Iy arising from € to be determined from the norm of the measurement

error at the N measurement points wg = UReR = UNEN. That is,

o, = 2] < 3L D

meas

where

- URQR‘ case I
W = _ . [59)
€ - Uqu case IT _ ' :

If the modal coefficients of the disturbances are uncorrelated then

Eq. E59§ for case I becomes

: ‘ _ .
A :
JN;n SE[wé\I wg_] = z 2 uiz(zn) O%i- [60:]
cas i=N+1{n=1
N
- 2
The sensor locations are chosen to minimize j{: ui(zn) for as many of
n=1

the more significant high order modes as possible. This result is
censistent with that concluded ﬁith regard to actuator placement and,
consequently; the criteria for actuator and sensor ﬁlacement are
identical. Since increasing the number. of sensors is relatively
inexpensive, in many cases it will be deeirable to have more,eensofs
 than actuators (or comtrolled modes). If M > N sensors are used, a

parallel development indicates that with increased measurement s

N DS CR G
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yielding an expected improvement of

M N

- 8 2, 62
AJNineas i;%;l gi; ul(zn) qu E ]

For the second case, of which the mirror problem is typicél, the

distortion in the higher modes is caused by the control action and the

neasurement error at the nth sample'point is
00 N
ve(zy) = Z Z us (25)¥5 5 | 25 (3]
Cooi=N+LL =1

From the properties of the disturbances, the expected value of wg(zn)

can be determined and is given by

2

N oo
E[%g(zni]A= }Z }:' uj(Zn)Wji Gai | [bhé]

i=1_j=N+1

and

I F i v(z,) = z Z Z Cuy(zg )y ] cﬁi. (640]

i=l{ n=1 JéNﬁl

This error is'on_the order of magnitude of the error in the uncontrolled
modes Jy and represents thé.effect of estimating the modal coefficients
from output measurements. Increasing the number of sensors, as suggested,
will substantially reduce this error if the remmant Jp is dominated by .

the first few higher modes.



VI. SUMMARY OF DESIGN CONSIDERATIONS

The performance index for the system is broken into two pérts:
(1) that contributed by the controlled médes, and (2) thatldue to the
uncontrolled modes. Applicaﬁion of active control reduces the error in
the controlled modes to any arbitrary'level‘while the disturbances
producing errors.ih the (uncontrolled/hnmoﬁitored) higher modes camnot
be counteracted. Purther, the corrective forceé applied by the finite
- number of discrete actuators exciteé additiohal errors in‘the higher
modes. When modé estimation is emplo&ea, errors due'to measurement
uncertainty are introduced into the firsth modes. ‘Thﬁs, the total
system error is given by ' | - |

I = JNmeas ¥ JRo f JRc ‘ , [55]

where JNmeas’ JRO, and JRc are defined in Eqé. E59é) and [ﬁé]. It was
observed that these errors mayvbe minimized by'factors under the
designer's control. These factors are actuator location, ped size,

and sensor location. Selection of actuator location'permitted
minimization of the excitation of the more significant uncontrolled
modes. The pad size was seen to act as a filter which attenuates the
effect of the control. input in exciting the higher modes. The pad

size is selected to cause the modal content of the applied force loading
to drop off quickly above the Nth mode. Combined with actuator locations
that minimally excite the first few (most significant) higher modes, the

pads together with the plant provide the desired modal filtering for the

46
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remaining high-order modes. Finally, if estimation errors are to be
minimized, sensor location requirements become the same as those for
actuator placement. In some instances, additional sensors may be used
to reduce the errors in estimating the modal coefficients.

The above points are illustrated most clearly by the example of

a simply supported, thin, square, flat plate with the following

parameters:
Thickness . ‘ 0.5 inch (1.27 cm)
Length 30 inches (76.2 cm)
Width ‘ . 30_ inches (76.2 cm) 5
Young's modulus ' 107 psi (70.3 X 107 gm/cm®)

Poisson's ratio . 0.2 |

Table 1 contains values of a% which are inversely ﬁroportional to
mode transmission as given by thevsteédy values of the A matrix. The
modes are ranked, from most to least significaht, in terms of decreasing
(l/hi)2 and control of the low-order modes is desired. With the modes
ordered with m on the ordinate and n oﬁ the abécissa, contours of equal _
(axj_)2 become circles in the n,m plané. These circles may be approxi-
mated by squares; for example, if 25 modes are to be controlled they
would include 1 Sn<5and 1 Sm = 5 as shown in Fig. 1lT7a. The next
highest mode in each direction is m = 6 and nv= 6 which has 25 mutual
nodes equally spaced over the plate, see Fig. 1To. Actuator placément
at these nodes (which can always be achieved since the m + 1 mode has
m nodes) makes W orthogonal and.precludes excitation of any mode Por
which m or n equal 6. Alternatively, the first N most significant
modes may be controlled as illustréted in Pig. 17c. This is achieved

by the actuator placement of Fig. 17d. The unexcited modes in the
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Figure 17.- The locations in the m,n plane of the controlled; unexcited,
and unmonitored modes of a flat rectangular plate. ‘



latter case are those with m = 8 or n = 8. In any case, final
determination of the optimal trade-off requires detailed evaluation
of fhe performance index.

Since data regarding the disturbances to which a primary mirror
surface is subjected are not presently available, a disturbance profile

. characterized by a modal force coefficient with a standard deviation of

qu plate

area
= = 6
R VT (56]

in pounds per square inch, for all i, was assumed. This profile yields

an rms figure error of

F = & 50 X 10° inches ‘ 6
plate 2 _ I [ 7]
area . : '

for the uncontrolled surface which is in reasonable agreement with the
figuring errors of the mirror whose diffraction‘pattern is given ' in
Fig. 5. Pad size was selected to be 0.5 inches (1.27 em) x 0.5 inches
(1.27 cm). Fig.‘lB displays the rms figufing error for a type 1 servo
‘versus the numbef of actuators for placement of the type iliustrafed in
Fig. LTb. The type O error was evaluatéd for optimal géin but did not
provide a significant iﬁprovement for the error profile considered.

The details of the procedure used to'obtain Fig. 18 are contaiﬁea in

Appendix C.
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The preceding sections contain the development and summary of
design considerations for the discrete control of a distributedé
parameter. system. A simply supported flat rectanéular plate has been
used as an example because it possesses unique properties which clearly
- reveal the results of design decisions which are obscured in most
distributed system control problems. The following section pfesents
the applicétidh of the design technique to a plant which is represeﬁtatife.
of a thin deformeble mirror and whose complexity is more nearly

commensurate with that of plants generally encountered in practice.



VII. MODAL CONTROL OF A FREE CIRCULAR PLATE

Modal Representation

The equation of motion of the free circular plate of Fig. 19 under

forced vibration is

Bzw(r,e,t)

2 2
vV S Vwr,0,t) +
(})) P atg

= p(r,8,1t) (e8]
where w, p, and V2 are expressed in cylindrical coordinates. Assuming
solutions separable in r, 9, and t [ﬁ.e., w(r,0,t) = ci(t)fi(r)vi(ej],

the analysis follows that of the rectangular plate to yield

2 .
a%cy (t) |
__Eiz_— + a%ci(t).= 0 [?9%]
dev.(e)
i 2
——+ vy (0) = 0 [69v]
2.2 |
r<d [fi(r)] af, (r) :
2.2 _ .2 -
T (P2 < o (69¢)
where
2 _s.b _
aﬁ'_ = -p— k'l . [:70]

Since the mode shape given by’[69ﬁ] is periodic in 0, n is an integer and
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p(x,y,t)

r W(rlerf) N

Figure 19.- Free circular plate.
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ui(f,e) = A[?n(kir) + BiIn(kiri]cos (n® + 6p) [ki]

where A and Gn are arbitrary constants, I and In are the nth Qrder
Bessel and modified Bessel functions, respectively. The valﬁes of ki
and B; are determined through substitution of [71] into the boundary
conditions, whicﬁ for the free plate, arise from the absence at the

free edge of both the bending mament in the radial direction and

(10)
vertical shear; i.e.,
2 2 ‘
d v 4 n7v
2= e ()] =0 [72a
(dr rar ) | (=]
free edge '
and .
2 - (r) ‘ '
df a 1 4 n- v-1 :
— . — fi( ) + ( ) = Q. E72b] ‘
dr\gpye r ar 2 : :

free edge

Under these conditions there exists a denumerabxyiﬁfinite sequence

of eigenvalues

ki =k | , [75]
‘for which the associated eigenfunctions form a complete orthogonal set
permitting both p(r,e t) and w(r,e t) to be expanded in a unlformly
convergent series as assumed in Egs. [lQa] and ELEb]

Table 2 .contains values of km for several modes. Because of the

importance of the mode ‘shapes relative to design decisions, the radial
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'components of the first 21 modes, ranked in order of increasing
frequency, @;, are plotted in Fig. 20. As a result of the nature of
the © variatién in Eq. [kl , each pair m,n is gssociated with two
distinct modes given‘by

A fﬁn(r) cos nd
mode pair m,n =

(7]
fon(r) sin neé
for n % 0. For n = 0 a single distinct mode exists for each pair of
m;n. To minimize the expectation of the square surface error, the
actuators should affect control on the most significant modes as
determined by the transmission factor l/pa% and the disturbance profile.
For the purposes of this paper, and as in the case of the rectangular
plate, a force distribution with csi
‘uncontrolled rms figure error of 50 X 10~

=.c§j is assumed such that an
6 inches (1.27 x 10'4 crm)
results. With this white modal disturbance the system obJjective is to

exert control on those modes with the smaller values of kp, in Table 2.

- Actuator Size and Placement

The actuators are again modeled as disPIacement actuators in
series with a spring which 1is attached to the plate by means of a pad:
The springs are relatively soft to meke the éffects of mirror
displacement feedback negligible as discussed in Appendix D. The pad"
shape 1s a portion of an annulus bounded by cohstant incremenfs in

radius and angle. The elements hij are evaluated as



m = o rigid body mode
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Figure 20.- Modes of free vibration of a free circular plate.

-
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Ar s ax-I
ry + —J 8y + —d ,
hl 1 . e
th — - th Jf J[ A[?n(kmnr)
J*" pad  J pad v, A8,
area area ry - —< 9, - —d
J > J )
+ BiIn(kmanJ cos (nd + Gn)r dr de . [?5]

for which the 6 dependent component is

- sin (nAej/2)-

5 Ty /2)

cos (nej +6,)

where normally the increment AO is constant over all J péfmitting thé‘
inclusion Qf'this cbmponent in the decoupled plant dynamics.. The r
component isbsomewhat less tractable. Under the sﬁbsﬁitution

no= kg : [?6]

the r dependent portion of hij becomes

ar s

kmn(%j.+ ;379 .
—é—f | AfT,(n) + BI(n}]n an

which is integrable if n is an'evén integer, but requires numerical
integration or use of tables if n is odd. The effect in either case

decreases as ky, incresgses.

is that the radial component of hij
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In determining the placement of the actuatois note from Fig. 20
that each mode m,n has nodes at m distinct locations along lines of
constant © and 2n nodes circularly. The placing of 2n actuators
circularly at equal intervals results in their poéifion coinciding
with the nodes of one of the modes described by Eq. [74]. Cénsequéntly;
this mode is not excited while the one spatiélly shifted 90o is.

To determine the desired actuator placement a knowledge of the
disturbance profile is required. Under the earlier assumption of a
white modal disturbance spectrum (dgi = cgj), the objective is to
control the modes with the smallest values of kmﬁ' Inspection of
Table 2 indicates that lines of constant kmn tend to form triangles

connecting m to n where

e

n

om . . [77]

If the controlled modes are n S Dpoy 8nd m < Myax the controlied area
of m,n plane is a rectangle (see Fig. 2la) which should approximate
the region of the first N significant nodes. Actuator placement would

fall at the nodes of the next highest modes which require

Nactuator = g(nma.x + l)(mma.x + l) ‘ [78]

actuators corresponding fo the mutual (mmax + 1) nodeé radially and
2(npgy + 1) circularly. The controlled modes are the (e, + 1)
(mpoy + 1) bounded by the rectangle Myex? Pmax blus the m .. + 1
excited modes for which n = n .. + 1. Thus, the total number of

controlled modes is N = 2(nmax + 1) (m.max +1) =N

actuator’ The modes



61

not excited by this actuator placement are those at n = ngp . + 1
whose nodes fall on the lines of constant 6 where the actuators are
placed (those at n = ng, + 1 spatially shifted 90° are the extra
mpoy + 1 modes included in the N controlled modes). Additionally,
the mode whose radial nodes are selected as actuator locations is not
excited. The pertinent controlled and unexcited regions of the m,n
plane are illustrated in Fig. 2la along with the corresponding
actuator placement in Fig. 21b. However, because of the“tendency
of the lines of constant k , to form triangles as indicated in Eq. [:77],
control of an area in the m,n plane as indicated in Fig. Elc_is
-generally desired. This can be accomplished by the actuator placement
shown in Fig. 21d. Note that in the latter control scheme While the
N most significant modes are controlled, it is not possible to preclude
the excitation of the next most siénificant_modes. The trade-off must
be made on the basis of actuator location effect on the imaging index
Jr.

While, at the present time, the imaging index has been detailed
only for the rectangular control scheme illustrated in Fig. 2la,
preliminary results indicate that control of the N most significant

modes (e.g., see Fig. 2lc) is preferred. The rms figuring error

F =‘J JI/plate area based on the rectangular control scheme of Fig. 2la
is plotted in Fig. 22 versus number of actuators for a plate with the

following data:
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(b) An actuator
configuration utilizing
twenty-four actuators.

(d) An alternate actuator
configuration utilizing
twenty~four actuators

Figure 2l.- The location in the m,n plane of the controlled unexclted,
and unmonitored modes of a free c1rcular plate.
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Thickness 0.5 inch (1.27 cm)
Diameter 30 _inches (76.2 cm%
Young's modulus 107 psi (70.3 x 107 gm/cn?)
Poisson's ratio 0.2

Ihese results indicate satisfactory control, yielding diffraction-
limited performance, as defined by an rms figure error of less than
0.5u inches, is achieved with less than 24 actuators. This is
significantly less than the 61 actuators used in the present laboratory
model L which was determined by sectioning the mirrorvinto equilateral
triangles 3.75 inches on a side (the 5.75" X 3.75" x 3.75" . x 0.5" thick
triangles represent a thickness-to-area ratic near that normally found

in monolithic telescope mirrors).



VIII. CONCLUDING REMARKS

The modal expansion technique has been applied to the problem of
correcting and maintaining, to the tolerance required for diffraction-
limited performance, the optical figure of a plant representative of
the primary mirror of an orbiting astronomical observatory. The modal
technique has been shown to be particulariy appropriate for this problem
by virtue of its relevance to a useful meesure of image quality, its
ability to decouple the system dynamics permitting simple control
techniques to be applied, and by the extent of the insight the technique
affords into engineering design decisions.

For distributed plants subject to extremely accurate control, it
is necessary to consider the effects on systém performance of all of
the modes -~ not just those which are‘subject to control. In fact, with
the error in the modes under control reduced to eny desired level, the
major system error was shown to reside in the uncontrolled higher-
order modes and this is increased by the control effort applied to the
lower modes. For this reason the most significant design decisions
are those related to the effects of the corrective control forces on
the higher-order modes. The analysis presented in this paper describee
the effect of actuator size and location on system performence, factors:
most critical to efficient design. The requisite conditione for
minimizing the number of discrete control inputs required to achieve
satisfactory performence were outlined and then illustrated in two

design exemples. The results for both the rectangular plate and the
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free circular plate indicate that the thin deformable mirror can provide
diffraction-limited performance; furthef, that this performance can be -
achieved with considerably less actuators than that required for a
segmented mirror where the thickneSé-to-area.ratio for each segment
approaches that normally used in monolithié mirrors.

The disturbance profile (if data on the effects of thermal
gradients, spontaneous release of matefial stresses, or other factors
producing distortion of the optical surface become available) can be
readily incorporated into the design procedure. This is achieved by
using the profile along with the transmission properties 6f the piant
(plate) to determine the modal errors and the N modes yielding the
largest errors controlled. Extension to more complex plants (e.g.,

shells), while requiring COnéiderable computing effort, is‘difect.
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APPENDIX A

Determination of the Eigenfunctions and Eigénvalues of
a Simply Supported Flat Rectangular Plate

The equation of motion of a uniform'plate'in forced vibration(g)Ais
Pw(x,7,t)

) = P(X:'Y:‘t) ' EAl:]

V2SV2W(x,y,t) + 0

‘consider first the homogeneous equation. The modes of free vibration
will be determined through the separation of variables technique by

assuming

W(x,y,8) = vy (6)ug(x,y) [

Substituting EAE:I into [Al]
L Y2
w1 (£)8V wp(x,y) + o vp(x,¥) -B—Z—i-éﬂ =0 EA5]

dividing both sides by po¥ ) (t)wo(x,y) yields

s Vsz(x,y) _ 1 ' Biwl(t) [A%]
P wo(x,¥) - wy(t) 2 ,

Since each side Qf[}n].is a function of different variables, both
sides are set equal to a% - a positive constant. This yields the

following equations

S
7 Vvalxy) - afrp(x,y) = 0 ', (5]
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2
o w, (%) dw, (t)
1 2 L 2 _ .
" + wiwl(t) = " + wiwl(t) =0 | [A6]
Rearranging [:A5] ylelds
. , | »
- o wo(x,Y)
Pagl) - L g 7]

or

p p — '
(V2 + wi\’ —S-XY; - wi,’ —S—)WE(x,y) =0 _ EAB]
The solution to EAB:]is the sum of the solutions to each of the products

of [AB] or therefore to

<V2 + %@)WE(X,Y) =0 _ [A9]
(V2 -y él wa(x,y) =0 [Al@

Y72 is the Laplacian in Cartesian coordinates. Equations [A9] and

EAlO] .are the i'efore

Y- | 3° . { P -
5_5_2_ wo(x,y) + a—zwz(x,y) * wy -S—w2(x,y) =0 . [Alg

X Y
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A further assumption is made that
wa(x,¥) = wy(x)wy(y) - (w3

In this case [All] becomes

dy

&P, (x) &5, (7) L
() —i;— + w3(x) ———4—2—— * ‘Di\’ —QS— ws(x)wy(y) = 0 [a25] -

Dividing by w5(x)wu(y) and rearranging yields first

a2 @2 | { . |
1 Wﬁ(x) + 1 Wl}.(y) + o o _ o | EA]_):_]

w5(x) ax2 wy () ay? 3
then
1 d%J5(X) . a') o1 d2le_(y) [A]_5]
wz(x) g2 T LN S wy(y) ay2

Since the left side is equal to a function of x, and the right a

function of y both sides must be equal to a constant + MQ' (The

2 2

choice of sign on p“ is arbitrary since choosing as the constant - 0

will yield the same answers.) Equaticml[klij beconmes

5__5_(2_’5)_ N (_ er wi\]?’_;)%(x) =0 (a16)

dx

and

— et so (2]
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The solutions to these equations are

w5(x) - A sin ( \/_ ul * a)i\/gx + él) [AlS]

and .
wy(y) =Apsin (uy + Ep), [219)
respectively.
From equations [:AlE] B EA]_S], and [Al9] the solution to equation EA5:]
is

WQ(X}.V) =A3 sin \j- u2 t Wy \ ’—% x + &/ sin (My + §2) [AEO:] .

where Az is the product of A; and Ap. In order to evaluate the constants |

in EAEO] the boundary conditions must be specified. TFor a simply:

 supported flat plate they are(10)

wo(x,y) =0 for x
v

0,a [Azl:]

non
(@]
-

o'

Fus(x,y)  Bwy(x,y)
S) +

v | [:A2é:]

dx? dye

X =
X=a

and



N

ngg(x,y) BQWE(X)Y)

M, =0=-5 + v [AEB]

dy2 2

y=b

In light of [A21] the equations [422] and [423) may be written as

32y, (x,7) |
_2 =0 _ [a24]
%=
X:
X=a
and
32w, (x,¥) |
o\X, .
il (23]
oy
y=0 '
y=b

Using the conditions for x = 0, y = 0 from eqpationb[éei] in EAQQJ '

yields

g =&, =0 [426]
Using the condition of equation [AE%]'for y = b yields

sin b = 0 [227]
and therefore

= n=0,1 2, ... - [A28]
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From the condition for x = a

sin (- W+ wi\[}-; )a =0 [a29)

or

- Wl ot ,”_9_ = I =
(u I S> = m 0,1,2. [AB(S_-]

Substituting [A28] and [ABO] into [:AQO:] gives in [ABl:] the shape of the

modes of free vibration, or eigenfunctions, of the plate

wg(x,y) =ABSin n_%o_c sin W n,'m =1, 2, 3, «us [ASiJ

The resulting mode shape is identically zero for either m or n zero,

consequently, equation [ABl] is valid for the range of m and n

indicated.

That equation [A31] satisfies @2{] and [A25] may be verified through

substitution. Further, A3 may be chosen to satisfy the requirement

fbfawz(x y)ax dy = 1 | [A52]
o Yo 17

which yields

Az =+ [A53:\



>

Lo .
wo(x,¥) = - sin m—aE sin E{:—y [ABLF]
Prn(x,¥)
. S o oy
Since from [Alacuf = - W
sia 32 32
— + wo(x,y) A35
, ° a2 o o2 ’ L 1
W =
* w2(x:3’)
L h 22 22
2 S 1 7 e
IR 0] R wlxy) + = = () [226]
N
+ n.b—# W2(X:Y:)]
2 2 2
2 _sn'im® L ns| .8
T2 +b “mn [27)

This could also have been obtained from [AEY:] s [:AEBJ , and [A30].

Since the solution to (6) is

wl(t) = Ay cos(coit + §i> [ABS]
The most general solution to the homogeneous form of [Al:] is

00

. onux |, may
w(x,¥,t) =Z Amn cos(a)mn + gm.n) sin ~ sin — [A59]
m,n=1

Thus the eigenfunctions or medes of free vibration and their
associated eigenvalues have been determined for a simply supported,
flat, rectangular plate and are given by equations [A5LP] and [AB?]

respectively.



APPENDIX B

Determination of a Set of Actuator Locations for Which N For
a Simply Supported Flat Rectangular Plate is Orthogonal
The purpose of this appendix is to indicate, for a simply supported,

flat, rectangular plate a set of actuator locations which make the il

matrix (eq. [513) orthogonal. The equation of motion of a beam(‘]j) is

b 2
2 J w(x,t) 0 w(x,t)
= - : Bl
T BXH d‘t2 [ :]

The method of separation of variables is used, consequently,
w(x,t) = wy (x)wy(t) : [32:]
Substituting []:32:] into EBl:) gives, after dividing both sides by w(x,t),

2 dhwg(x) B dzwg(t)

u(x) et owa(t) gl (2]
Both sides are set equal to a con’stant 7'4
L
d Wl(X)
1'2 —-;-X—E-—- - ')'ll'Wl(X) =0 [Blba]
2
d“vo(t)
4
— t) =0
— 7 i ) | | ELY

The solution to [Bll-b | is
= s 2 )
w2(t) = €, sin 7't +C, .cos Y=t |B5]
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The solution to the remaining equation, [Bha:) , will yileld the modes of
free vibration of the beam. Since the exact solution will be used in
the sequel this information will be obtained first.

Equation E34a:] is factored as

(_@E - 2;2-)(9?— + Lf—)wl(x) =0 EB6]

ax? dx®

and the solution is the sum of the solutions to

(55 Fatwr =0 Ej

—-
and
(-d—2 + -:--Z-)wl(x) =0 EBB:]
ax .
Thus |

wi(x) = Cécos L x +Cy sin Z +Cx cosh L +Cg sinh -—7—; [Bé]

N7 VK '™ N

at this point the boundary conditions are brought in. For a simply

1
supported beam ( O)

[Broa)
[Brov)

l
o

Wl(O) =

1]
O

wy (D)
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and there are no moments at either x =0 or x =D

2
a%w, (x)
1l
dx x=0
x=b
These conditions reguire
0 = C3 + Cs (B114]
Y . Y 4 . V4
Q0 =Czc05 — b +C), sin —— b +Cs cosh — b + Cgsinh —= b {Bllb
3000 7 b * Choln o P 05 omh G b+ Gt I [y
7,2
0 == T—CS+ s C5 EBllC]
2
0= - 4 CBCOS —Z-—b + Cl sin —7—-b + £C5cosh—7—-b +c6sinh -Z--b
T 'Ed VT VT VEs NT

From equations [Blla] and [Bllc] it is determined that EBlld]

C5 = C5 =0 (312]
leaving
. 9 oy
0 =Cj sin —— + (g sinh —— b . B13
NV T [ :l
0 = - C)sin —2 + Cgsinh —2= b ED

B V=

A nontrivial result requires the determinant of the coefficients of

Cy and Cg in equations @lE] and [Bllg to be zero. Consequently,
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2 sin -2 sinh 2= = 0 B (525)

Nr o VT

or

._73 = my [B 16]

Substitution of [B16 ] into [Bl3] indicates that Cg = O and

-5 B

The eigenfunction of the homogeneous simply supﬁorted beam is
wy(x) =C)sin %F X ‘ [ﬁlé]
The solution to the problem is now considered through the method

of finite differences. A number of stations are located at equal

intervals, 1, along the beam as shown in the following sketch

0 X1 Xp seese Xpol] Xp b
and the equation
Catll ok |
— -5 W=o0 (319]
dx T ,

N

is written at each point, where w = col w(xl),... o(x,). The fourth

derivative approximation used can be obtained by first obtaining the
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Taylor series expansions about X, of W(xr+l), W(Xr+2)’ W(Xr-l)?
w(xp_p). These expressions are

(n)

w(x, ) = w(x,) + W'(xr)l + w"(xr)-;-E ...+ W (xr)lE- EéEO%]
! n!

w(x,_1) =w(x,) - wix. )1+ w“(xr)g—'g- .‘-‘ R (-l)n’w'(n)(xr)-z'—'ri

| [BEOb:]
(2y®
'nl

[320)

2.
i) = W) + ()2l e L+ L e )

(21)"
nl

feod)

subtracting four times ([:BZOa:] + [BEOb]) from [Bzoﬂ + [BEOd] yields

2
W(xpp) = w(xy) - wi(x,)21 + w"(xr)(SZ) o w (0me(ed)

: . 4 L
- LLE’V(XI%l) N w(xr--lﬂ*‘ Wxpgp) = - 6v(x) + 2 dd:;(x ’-%'_ (2% - 1)
, N
. dQInW(x) ﬂ 2m
+oa .+ 2 - el (27 -h)
X=Xy,

After rearranging equation [B2];] becomes
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i) = Wil g) * Gu(x,) = blay) * 900,0) g

+ .,
Wb . ax*
: X=X
e 2 —m— e & P
Tgxem (2m)!
XXy .

(522]
The term on the left will be denoted Lege The finite difference method

approximates the plant equation as

) - vy co [ae]

Collecting the expressions for each point and arranging them as

indicated by the definition ofvﬂ“yields the matrix equation.

W(xq) | v(xq)
) 7’2 .

Legm | - = —ég e ' ,[??%]
w(xp) | w(xq)

The solutions to this equatibn afe the eigenvectors of the finite
difference - matrix representation of the‘plant, Lpgme The matrix
is a reai symnetric matrix and consequently, has‘ofthogonal
eilgenfunctions. |

If the right-hand side qf equafion @22] is used instead of the

left it is possible to obtain an analytic expression for the numerically
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obtained finite difference answers. That is, consider the eguation

2
0 = dhv(x) - £ w(x) +. .. +2% Tulx) ¥ £l Pl-) o
o . o (2m!

(525)

The answer to this equation evaluated at x = X, 1s equal to the finite
difference answer.
. i I .
Consider the function uj =Cy sin —1;-x which, from [?18]: 15 seen

to be the exact eigenfunction. Substituting this expression into [ﬁ2§J

yields, after cancelling uy

L
_ K Yea, 12(m-2) o 1)
O = _12" —‘;_2" s o o + (-l) ’__) (21]1)! 2 + . . . [B26]

Thus uy (x) is the solution to [BES], and v (x1) = w(xy), when

» L 2m _
_Tra g, 4B Ve o
2 2 em) U\ \7 12

(z21)

1 is the separation between adjacent stations on the beam and it can

be made as small as desired. Consequently, equation E?E?j indicates

the resultant convergence of _EQ to —Z—.
\[T \lT

purpose of this appendix is the fact that the 1

More significant for the
th component of the
jth eigenvector of the finite difference solution is equivalent to

the jth eigenfunction of the beam evaluated at a location corresponding
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to the ith point in the finite difference representatibn of the beam.
Since the matrix UM of Eq. [34] is
- "

ug(xq) o oo uylxy)

I .o [(B=8)

LFl(XN) e uN(XNZ

each column corresponds to one of the orthogonal eigenvectors of Lfdm
and the matrix UN is itself orthogonal.
To this point the proof has concerned the solution for a beam,

while it is desired to show

N

Z w(xduyx) =0 143 [B29)
k=1

for the plate. For the plate, Appendix A shows that

e N

ug (%) = C4 sin

consequently, Eq. [?2?] may be written

N N ‘
D ay g Gg) =) v G G (e () (3]
k=1 k=1 ‘
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Consider an array of locations
N = XY (32]

.with X locations in the x direction and Y in the y direction. Thus

[B3l] becomes

N . X X
Zuxi(xk)uyi(yk)uxj(xk)uyj(xk) = }j z Ui (x5 ) vy (¥B) g 3(xa)uy 5(yp)
k=1 ' Az=l B)=1
- - [33)
X Y
ox = ) Gy () ) s G )

A5=l BL|_=1

Each component in the second expression for the right-hand side of [BBB]
'is .equivalent to the beam, consequently, either the first or second
summation will be zero unless i = j.

Equally spaced points will provide an orthogonal matrix for the
purpose of relating performance specificatidn in the ofiginal and

transformed systems.



APPENDIX C
Evaluation of the RMS Figuring Error for a Simply
Supported Flat Rectangular Plate

The purpose of this appendix is to describe in detail one of the
procedures used in determining the results contained in Figur¢ 18. As
indicated in equations [ 42] and [67) the exact determination of Jp would
require the evaluation of an infinite number of terms. In using a
finite number of terms P to approximate Jy and, therefdre the rms error,
it is desired to select such a P, if possible, which would place a bound
on the amount by which the approximate value ofJi would differ from
the true value.

The value of P which should be used is a function of the individual

terms in the sequences

815 8oy ees B ees | [:c]_]

and

€, of, ... af ... < [c?]

Since

ci. - Bigg . [?i]

one procedure might be, for monotonically decreasing values of Cigg?
to observe values of Cigg in EC3] for increasing i until values of

ciss are obtained which are significantly less than the accuracy desired.

85
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The value of Jt may be determined for two values of P in this neighbor-
h hood £o determine whether or not Jp has Eeen obtained accurately enough.
While such a procedure Woﬁld be adequgte the specific nature of
the présent problem permits the selection of P on a more rigorous
basis. For a square plate the expression contained in Appendix A for

the eigenvalues becomes

L, Q)2 |
2 - 22 (a4 o) @
From Eqs. (2], [15), and (€3], ana (c¥]

2

) s ; §i agas _ .
J; L wo(x,y,t)ax dy =i=1E31f)+ 2[111? N n]?_:]h | [05.._)

Since m and n each take on the values of all the positive integers

the right-hand side of [Cf] may be rewritten

o]

ZE—TJ—E“‘ #ni] - ZZ [

i=1 j=1L

In order to remove one of the infinite summations, use is madeof the

symmetry of the eigenvalues by writing [?6] as

["%Eiz Z 12 jljz:]” Ejniig z Z [12 + szu (c7]

_.l J_



87

where alJ

Eq. [?é]). The terms i° + j° in the series

is considered a constant as has already been assumed (see

‘ iZl jzl [2 +l 2 - | [:08]

are placed into correspondence with the positive integers in the order
indicated by [C8). It is desired to indicate for the i and

corresponding to the kth value in (pgj that

Zk o [cs]

n

24

o

In the first n values of i there are

T =z 1 | (c19)

i=1

terms where T is

n( 1
o) 3

The j = 1 term is the minimum value of 1% j2 for any value of i.

Since, for i =n

2

22+ 2 > n? [c29)
if
2 >+ 1) (1)



88

inequality [C9_] will be obtained. Since [015:] is valid for

n>1 | ~ [c1lE]

then [09] helds and the right side of [07] may be written

l—'l\)

Esﬂhje 2 Z [:12 + Jeju - Z iu [Cl5]

i=1 J—l

The advantage of thé last series is that its sum has 'a bound. The

partial sum for the first ot _ 1 terms is

1 1 '
I T S R C16
which is less term by term than

Q' =i+-]_‘_+l+l+...+l+—;———;....—;—
oty F \GF T E W " (Et_-l)h (2t-1)

which is
A2 t-1
1 1 1 1
vasE 503 0@ B
thus
- (3) (3
Ut T 3.1 5.1 [c29)
1.1 |
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The second of the two terms is always negative and goes to zero as

2t . 1 increases. Thus the sum of the primed series from the 2t -1

term to the end, Q, is less than the second term on the right side

ot 19
1 t-1
5)

G < A5 [(e20)

Since the primed series is greater than by term than the k series, the

sum of the k series over the same terms must also be bound by the same

1
S (§> |
= Kt ) 2d _ 1 [021]

amount.

t-1

The original series is smaller than the k series term by term,

therefore, since

J;

o}

2 -1 8 2 | .
Z [Sﬂh 2 Emi + n2] L Z @ﬁuje[:ne:]
()

a rb
Jﬁ w (X)Y:t)dx dy
[e]

then
t-1

. g(l)
8 1Wo3)

Pen a al 1 2
f we( ,y,t)dx dy = Z [Snujg En + nejh [SﬂﬂE 23 _ 1

[c23)
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and
‘ t-1
2k 8,2 ' ai%
fafbm(x £)ax 4 _Z a~as < a8 2
oo T L TRl ¢ )R 2o

[c2i)

The inequality may be used either‘fo place a bound on the error
for a fixed number of modes considered in the evaluation, or conversely,
it may be used to selecf the number of modes which must be considered
to keep the error below a certain level. It should be noted that the
value of a; in [?24] is the result after contrcl and must be chosen
conservatively enouéh to reflect the induced error as well as that
already present. Once the bound on the error has been selected t may
be determined from [?24]. This equation was based on the use of 2t -1 |
terms in the series, conseqpéntly a square n X n array of modes cannot

be used for which

n(n + 1)
2

> 2t -1
Finally, the tightness of the bound is dependent on how closely
the k series approximates the true series for the terms after the ot .1

term. The bound may be tightened by observing actual deviations and

adjusting the inequality [b24] by the appropriate amount.



APPENDIX D

VMirror Displacement Feedback
The actuators considered in this appendix are modeled as types

(6-8),

which are being considered for actual usage " This model consists

of a pure displacement actuator acting against a spring and a backing
plate which is stiff relative to the spring. To obtain a spécified
force the displacement actuator is commanded to a new location relative
to the undeformed mirror.

-”If the mirror has deformed, the displacement of the mirror will alter
the magnitﬁde’of the applied forée. It is assumed, arbitrarily, that

one form of this displacement feedback might take is
pi(X,y,t) = @i(t)ﬁi(x)y) 'Kwi(x:Y:t) ' [Dl]

where pi(x,y,t) is the force density applied by the ith actuator, and

where
wi(x,¥,t) = w(x,y,t) . ED2aI]
.th
over the i pad area, and
Wi(X:Y:t) =0 [ngj |
elsewhere, and
K1 (t)

ff By (x,y)ax dy

ol

a, (t) =

)



wi(x,y,t) may be expanded as

[>e]

wy (%,5,%) éz ci'j(t)uj(x,y)

J=l

where

of5(0) = [ viome e ay
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(]

()

Since wy(x,y,t) is zero except over the pad area of the ith pad‘[D5]

can be written

cij(t) = f fW(X,y;t)uj(x,y)dxdy‘

ith pag
area

Substituting the modal expansion of w(x,y,t) yields

eiy6) = | fi ey (Bl (eo)ax oy

ith pad k=1
area

Interchanging the order of summation and integration yields

©

k=1 ~ 1th pag
area

3 .=Z ?k(t) f fuk(x,y)uj(x,y)dx dy.

(]

1)

(2]
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The total feedback force, fg(x,y,t) is

N ,
fS(X}Y:t)' =-K Z Wi(x:Y)t) - | ED9]
: I =
Substituting [Dh] into [D9]
N o ’
t(oy,t) ==K ) ) el®uyGey) (o]
i=1 =1 |

Interchanging the order of summation
o | A
£4(%,y,t) = - K }: uj i cij(t) [p11]

By comparison with e@ation[lQb] f4(x,¥y,t) can be expressed modally as

o]

£5(x,y,t) = Z aﬁ (t)uj(i,Y) [m2]
=1
where
a:].(t) =-K Z c].'_j(t) ] B [1315]
i=] : : -

Bquations [: Dl}] and [DB] can be used to put the expression for a}(t)

into a different form

1

K

oo
' i=1 k=l

e (t) f j we(x,¥)uy(x,y)ax ay  [Dik]

18 pag
area
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Interchanging the order of summation

- a'jl({t) =ick(t)i f f ug(x,y)uy(x,y)ax dy [Dl5:]
k=1

i=l ith gad
“ared

thus
- a'(t) = +X7 c(t) (6]

where Z is an o X © matrix which has individual elements of

) =,§i Jﬁ \/P uj(x,y)uz(x,y)dx‘ ' -A[bl7j

1=l jth pag
area

and where the spring constants are all assumed equal.
The matrix Z is locafed in a local feedback loop around the
diagonal plant matrix since it describes amplitudes in the force modes
as a function of the displacement mode amplitudes. Since, ‘in géneral;
the elements of Z are non-zero, this féedback causes the system to
become coupled. Inthis particular application the coupling exists but
can be made to have negligible amplitude. Since the displacement of
the mirror is on the order of microinches the spring constant is‘adjusted
so that the actuator throw required is on the order of inches.
Alternatively, a form of spring feedback may occur which can be .

treated without introducing coupling. Suppose that the expression for

pi(ny’t) is
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K(ig; - 2'mi) B; &y) [Dl8:]

'/[Bi(x,y)dx dy

which would be obtained by decreasing the pad area until the mirror

Pi(x:Y:t) =

displacement over the pad ares is’éonstant. This, depénding on the
manner in which the pad is bonded to the mirror, appears to be a
reasonable assumption. Expanding [Dl8j yields

K13, Bi(x,y) Klp, 8i(%,¥)
p; (%,¥,t) = - - . [o19)

ffFBi(x,y)dx .dy f];Bi(x,y)dx ay

This equation can be analyzed by a proceduré similar to the preceding
paragraph, or equivalent results may be determined from an inspection
of the appropriate block diagram. Proceeding as previously,the second

term in [bl?] is

fsi(XJY:t) = "‘ sziﬁi(X:Y)/f\'/;‘ Bi(x,y)ax dy [DQOJ

where 1, is the constant value of w(x,y,t) over the pad area. It is

desired to express fs(x,y,t) in a modal expansion

[><]

£, (X75t) = Zaﬁ_j(t)uj(x,y) [p21]

J=1

where

a{j(t) = - K//‘I‘ 'B'i(x,y)dx dy L[/;\ Wi(x:-V)t)Bi(x)Y)uj(x:Y)dX dy S

(p22]
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Since w;(x,y,t) is constant over the pad area and B;(x,y) is zero

elsewhere [beé] becomes

a szi(t) . '
ai'j(t) = f f B (x,¥)uj(x,y)dx dy [Desj
f f By (x,y)ax ay © 30 | |
T

The integral has been previously evaluated as hji_(Eq. [;8@]), therefore

- szi(t)'

By
ffﬁi(x,y)dx dy
r

and if the integral of B.(x,y) is equal to that of B.(x,y) then
i J

[pa]

aij(t) =

al(t) = -k N(t) [D25'_]
' ffﬁi(x,y)dx dy |
I‘.
where
r“"(:";j:y(j.vv't')T
N(t) = . = N(t) B3
bw(xj:Yﬁ:t)J

In this case the general result indicates thaﬁ there is coupling in the
system. If the system is assumed to have only finite eigénfunction

content then



X
W = z ci(*;)ui_(x,y)

i=1

If [b27] is placed in matrix form

where

ET]_(X].:Y]__) o (L]

J;l(XN’yn) s . UN(XN:Ynl

or

[27)

(e8]

- [p29]

The spring feedback loop as described by [?lé] and [?25} is shown in

Figure D-1

L) [ Jace)

c(t)

e
ld(t) ! !Bi(X-Y)dxdy

a'(t)

W (+)

v K
. ffﬁi(x'Y) dx dy

Feedback to
Controller

Figure D-1

The spring feedback loop.
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As indicated previouély, under appropriate conditions, the matrix can
be written as the product of a diagonal matrix and a nondiagonal matrix
as in 3% . In this case the spring feedback loop becomes that shown in

Figure D-2

g — W

= o s N - yN
fj; Bi(X:Y)dX dy B

Figure D-2

: A 4
The spring feedback loop for HN.= GNUN‘-
K .

fj‘Bi(X:Y)dX dy

. t -1 .
when UY =UN  the system is decoupled (see Fig. D-3) and the effects

Both GN and

are diagonai elements. Consequently,

of the spring feedback can be readily included in the system'design.

K NN

f/r By (x,¥)ax dy v | inf

Zdha- UN'

Feedback to
Controller
Figure D-3

The decoupled spring feedback loop.
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In summary, uﬁdef a specific set of assumptions, the effects of -
the mirror displacement feedback can be treated without introducing
coupling effects into the systém. In genéral, coupling effects are
present, however, the mirror displacement feedback is rendered negligible

through an appropriate choice of spring‘constant.
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